
Theor Chim Acta (1997) 95: 215-24I Theoretica 
Chimica Acta 
© Springer-Verlag 1997 

Size-consistent single-reference methods for electronic 
correlation: a unified formulation through intermediate 
hamiltonian theory 

Jos6 Sfinchez-Marin 1, Ignacio Nebot-Gil 1, Jean Paul Malrieu 2, 
Jean Louis Heully 2, Daniel Maynau 2 
1 Departament de Quimiea Fisica, Faeultat de Quimica, Universitat de Val6ncia, c/Dr. Moliner, 
50, E-46t00 Burjassot (Valencia), Spain 
2 Laboratoire de Physique Quantique, URA 505 du CNRS, Universit6 Paul Sabatier, 118, 
Route de Narbonne F-31062 Toulouse Cedex, France 

Received May 13, 1996/Final version received December 9, 1996/Accepted December 9, 1996 

Abstract. Using the intermediate hamiltonian theory as a unique conceptual frame 
and the technique of CI matrix dressing, a wide series of single-reference methods 
for the treatment of the ground state correlation are reviewed, compared, and 
sometimes improved. These methods range from independent excitation approx- 
imation (the very next step beyond MP2) to coupled cluster, going through the 
so-called electron pair approximations and the (SC)2CI formalism. A hierarchy of 
these methods can be established according to two criteria: 

1. The physical effects incorporated in the model space, the choice of which is 
flexible. 
2. The quality of the evaluation of the coefficients of the external space determi- 
nants. This evaluation, which remains based on a single reference expansion of the 
wave function, may simply ensure the size consistency or incorporate the linked 
contributions from the outer space. 

These formulations in terms of diagonalizations of dressed CI matrices avoid 
convergence problems, but their main advantage is their flexibility, since they apply 
to multi-reference SDCI spaces as well as to SDCI spaces. The use of a common 
frame allows one to propose consistent combinations of methods of various costs 
for the treatment of various parts of the correlation energy. 

Key words: Dressed CI - Intermediate hamiltonians - Many body perturbation 
theory - Coupled pair approximations - Coupled cluster 

1 Introduction 

In the study of molecular electronic energy of the ground state, ab initio calcu- 
lations usually start from a Hartree-Fock (HF) SCF calculation [1-4] that pro- 
vides the one-electron space of MO's adapted to an optimized single-reference 
configuration ~bo. In spite of its approximate nature, which is related to the average 
Fock's electron potential [4], the SCF wavefunction and energies show a number 
of formal properties that make them notably useful for their application in a variety 
of situations of chemical and physical interest. We can point out here the correct 
dependence of the energy on the number N of electrons that is ensured by the strict 
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avoidance of unlinked contributions in the energy (extensivity), independence of 
the energy and wavefunction of a molecular fragment from the other fragments 
when they are at infinite distance, e.g., after breaking of a chemical or a van der 
Waals bond (size-consistency or separability) as well as invariance on the rotation 
of occupied MO's. Besides this, the variational nature of the HF equations provides 
additional interest to the calculations as far as absolute energies are concerned 
because it provides a secure and comfortable guide for systematic improvements of 
the theoretical approach. 

In the search for less approximated or post-HF methods, the whole set of 
formal good properties is found again in the (exact for a given basis set) Full CI 
solution, which is impractical but for small systems and reduced basis [5-10]. 

So, considerable efforts have been devoted to the development of methods for 
dealing with electronic correlation adhering to three conditions: 

1. having reasonable cost in terms of computational resources, 
2. recovering of the most significant correlation contributions, and 
3. keeping the validity of the above-mentioned formal properties. 

By cost we mean not only the required resources but also the practicability of 
the method, i.e., the numerical stability and reliability of computational algorithms 
in different physical situations. Consider, e.g., that some methods may be well 
adapted to calculations in equilibrium conformations but numerically unstable far 
from equilibrium conformations. 

By most significant correlation contributions we mean not only the major 
effects (e.g., the dominant role of double excitations in equilibrium closed shell 
states) but also the ability to incorporate other effects that could become important 
along dissociation curves (e.g., the relevant role of triply excited configurations as 
wavefunctions become more and more correlated). 

Among the formal properties, extensivity and size-consistency have deserved 
special attention. Only size-extensive methods can be reliable when applied to 
larger and larger systems that become accessible to calculation by the increasing 
power of computing facilities. Only reasonably separable methods are promising as 
far as bond breaking is involved in chemical problems. 

Many body perturbation theory (MBPT) appears to be the logical guide 
[11, 12] in the understanding of correlation effects and of the relative importance 
of different configurations. MBPT provides the linked-cluster theorem [11], 
a powerful tool for correlation analysis. In particular, it provides the key 
rationale that size-consistency can be achieved only by methods that either do 
include only linked diagrams (among which the so-called exclusion principle 
violating diagrams, EPV) or include all linked and unlinked terms to ensure the 
cancellation of the unlinked ones at each (considered) order of perturbation. Even if 
they are very popular and useful near equilibrium geometry of most closed shell 
molecules, MBPT methods suffer serious convergence problems out of this limited 
domain. 

There exists an impressing panoply of non-perturbative methods for the study 
of the correlated ground state. In the present study we shall only consider single- 
reference methods, which attribute a special role to a single determinant ~bo, usually 
the HF solution. Among the most popular, one may quote 

- The truncated CI's which are variational but not size-extensive, a defect some- 
times approximately corrected through Davidson's type corrections [13] or 
through more elaborated coupled pair functional (CPF) treatments [14]; 
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- The coupled electron pair approximation (CEPA) [15-17]; 
- The coupled cluster (CC) method [18-23], 

each level presenting several variants. Recently, our groups have contributed to 
this panoply by new methods, which refer to the concept of dressing techniques of 
various levels of complexity [24-26]. 

The aim of the present work is to fight this increasing entropy (to which we 
contributed) and to provide a unifying frame into which the various methods find 
a logical position. We intend to clarify the connections between the different 
methods and to show in a systematic way the physical effects treated by each of 
them. 

Our main tool in this presentation will be the theory of intermediate hamil- 
tonians [25, 27-31] for the special case of a single state search, since it provides 
a very flexible conceptual frame. The principles of this theory will be recalled briefly 
in Sect. 2, which will introduce the idea of CI matrix dressing. Section 3 will present 
a series of methods which ensure size consistency through a minimal dressing. This 
idea applies to various types of model spaces and provides dressed independent 
electron approximation [32], an improved independent electron pair approxima- 
tion [33, 34], an improved CEPA version which is identical to the (SC)2SDCI 
technique [35], and the (SC)2CI method in its full generality [24]. 

Section 4 will consider more elaborate dressing methods adding linked effects of 
the outer space determinants. The perturbative evaluation of their effect leads to 
the shifted-Bk approximation [36-38] and to an improved version of it [25] while 
a factorized evaluation of the external space coefficients results in a rewriting 
[26, 39] of CC methods as dressed CI techniques, opening the way to a very flexible 
and reciprocal mapping between CI and CC formalisms [40]. 

Section 5 takes benefit of the common conceptual frame to show how to 
combine in a consistent way methods of different degrees of complexity and cost. 

2 Intermediate effective hamiltonian theory 

2.1 General presentation 

2.1.1 The correlation energy 
The FCI wavefunction for the state To, which satisfies the exact wave equation in 
the basis set 

H ~ o  -- go (Fo (1) 

may be seen as resulting from the action of some wave operator ~ on the reference 
space of configurations. If nothing else is indicated, we deal in the following with 
single-reference cases, so that 

~o = ~¢o  (2) 

and, in intermediate normalization 

S D T Q 
C T 7Jo = 4)0 + 2 cs q~i + 2 c~ q5 i + ~, '~ ~b, + }-' c~ 4'e + "" , (3) 

i j ~ p 

where i runs over single excited configurations (S), j over double excited ones (D), 
over Triples (T) and so on. 
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It is well known that the singles and doubles play a special role since the exact 
energy is obtained by projecting the eigenequation on the left by q~o 

S D 

So = <q5o I HI qSo> + ~, @o l HI 49i> c s + ~ <49o t HI 4)j>cy. (4) 
i j 

The correlation energy, Ecorr = ~ o -  <(ootHl ~bo>, is then obtained simply 
a s  

D 

E~o. = ~ <~bo I Ht ~bj> c~ (5) 
J 

provided that Brittouin's theorem holds. 
The goal of any not-full CI method is, in general, to achieve an estimate, 

as accurate as possible, of a subset of the exact coefficients Ck (at least {C0} ) 
and of the exact energy So. So, as an example, a truncated CI limited to S and 
D will provide an estimate of So (other states are not relevant in the present 
discussion) and a set {Ck} of coefficients of the singles (c f) and the doubles (cO). 
Any selection or truncation of a CI subspace implicitly defines a model space, 
since it treats at a higher level of accuracy the interactions staying in this 
space. Of course, the reliability of a model space depends on the way one 
decouples the model and the outer space. From this point of view, intermediate 
effective Hamiltonians are a tool of choice if a unified description of different 
methods is expected since they work on a selected model space, 6eM, of dimension 
n lesser than the FCI space, and are devised to look for a subset of exact 
roots and projected wavefunctions. This subset can be limited to just one root  
and just one state, of course, and this is the case we deal with in the present 
work. Note that the term model space is taken in the present work in the usual sense 
of the effective Hamiltonian theory. It has to be distinguished from the reference 
space of MR-CI calculations which may receive a dressing, as discussed in 
Sects. 3.4 and 4.3. 

2.1.2 The dressing operator 
Let 5a be the full space of configurations ~bi so that 

% = Z c~b,. (6) 

For  a given Hamiltonian H, the exact energy is 

So = < % t/-/1%>. (7) 

We can divide the whole space 5a into two subspaces, 5aM (model space of 
dimension n) and 5aE (external space or outer space), as it is usual in effective 
Hamiltonian theories [27, 28]. Instead of looking for the n roots that can be 
got from the model space, intermediate Hamiltonians look for a number 
no < dim{saM} of exact roots. This can be achieved through a further partition of 
the model space into a principal or main space 5ap and an intermediate space 5al 
(see scheme 1). Such a partition has shown to be very convenient to avoid the 
undesirable effects of the so-called intruder states, i.e., those states that being 
mainly described by configurations belonging to 5aE are quasi-degenerate in energy 
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with the higher states described from 5°M so that perturbational treatments intro- 
duce dramatic numerical instabilities. 

,6 

AM 

,41 A E 

In the present paper we consider only the cases where 5~p is just 
made of one reference, ¢o, this ¢o being the determinant of the largest coefficient in 
To. The projecting operator PM corresponding to the model space 5~M can be 
written as 

P = [ ¢ o )  ( ¢ o 1 +  ~ lqS~)(q~,l, (8) 
i e~,% 

where the subscript M has been dropped from PM for simplicity. We look then for 
intermediate Hamiltonians/7 that satisfy the following conditions: 

/7 = P/TP, (9) 

i.e.,/7 is defined on the space 6eu, and 

/7 ¢'o = ¢'o, (lO) 

where 

To = P %. (11) 

In the above equations, To and eo are the exact wavefunctions and energy as 
defined in Eq. (1) or Eqs. (6) and (7). 

We can think of /7  as being a projection of a dressed H operator, so that 

/7 = P(H + A)P (12) 

and call A a dressing operator, so that we can write 

P(H + A)PTo = eoPTo. (13) 

It is easy to understand the role played by the operator A by starting from 
Eqs. (1) and (10). After having defined the subspaces 5ZM = 5%W cJl and 5PE, we can 
write 

We close now Eqs. (1) and (10) from the left by ¢i ~ S~M SO that 

(14) 

H,o + ~ cjHi~ + ci (Hu -- Co) + 
j#O, i ,  jeSeM 

Equation (15) is to be compared to 

Hi,, 0. 2.. c~ = (15) 

H,o + ~ ciH~ ~ + ci(Hu - eo) + ~ cjA,~ = 0. (16) 
j # Off, .]E 5aM .]eS/~ 



220 J. S/mchez-Marin et al. 

Hence, the matrix elements of A must satisfy 

cjAu= ~ c,H~,. (17) 

It is important  to note here that we have only n unknowns, n being the 
dimension of 5°M, i.e., n = dim{5~M}. The unknowns are ~o and n - 1 coefficients q ,  
so that Eq. (17) can be used to have different, but obviously related, definitions of 
A u. If we choose to take A u = 0 whenever i vsj, we will have a diagonal dressin9 
operator defined as 

Aii= cf-1 2 cc~Hia" (18) 

Instead, if we choose to have A u = 0 whenever j ~ 0, we will have a first column 
dressin9 operator 

Aio= 2 c~Hi~" (19) 
¢t~ Ot E ,ft'E 

The equivalence between different forms for the dressing operator A and their 
properties has been discussed and shown elsewhere [25, 26, 35]. We will say 
here only that if Ic0J > I ci[ for every ci, the first-column dressing is that which 
ensures the minimal norm dressing and that some versions of the diagonal dressing 
have proved to be very efficient for the calculation of excited roots in correlation 
problems [41]. 

2.2 Matrix formulation 

It is worthwhile to consider the dressing operator from the point of view of its 
operator  matrix A in order to show how intermediate Hamiltonian equations can 
be written, under a very general condition, as eigenvalue equations. 

For  the column vector c, the exact Eq. (1) reads 

Hc = So 1 c. (20) 

If we define the projection operator Q as the complementary of P, i.e., 

Q = 1 - -  e ,  (21) 

we can write for the rows associated to the model space 5eM, 

PHPc + PHQc - eo PIPc = 0. (22) 

The PHQc term is a column vector V so that its ith element is 

V,.= Z c~Hi~. (23) 

Equation (22) is a matrix equation that can be reduced to an eigenvalue 
equation if a square matrix A = PAP is defined so that the following condition is 
satisfied: 

Ac = V, (24) 

where the P operator has been dropped for simplicity. 
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Equation (24) represents a matrix formulation of Eq. (17) and it allows to write 
Eq. (22) as 

[P ( / / +  A - eo 1)P] c = 0 (25) 

which is an eigenvalue problem for the operator H + A limited to the model space 
5eM. 

Note that FCI represents the trivial case where 6aM = 5: and for which the 
dressing vanishes, A = 0. 

2.3 Application conditions 

No matter what definition we choose for nonzero Aij elements, the key information 
relies in the quantities Vi introduced in Eq. (23), which depend on the c~ coefficients. 

The following choices must then be made in order to develop practical applica- 
tions of the intermediate hamiltonian theory (IHT). 

(I) Choice of the principal model space Up. In the present work ~t~p will always 
be equal to the single-reference 4o having the largest coefficient in the state ~o of 
interest. The following remark may be added: we do not impose the condition that 
the Co coefficient corresponding to q~o in ordinary normalization should be nearly 
unity. The unique condition is that other configurations ~bi must have ci <Co 
in ~o. 

(II) Choice of the intermediate model space 5:]. The whole model space 5~M is 
then defined by means of 5:p and 5:i. 

(III) Choice of the external space 5¢~. All the complementary space of 5:ui 
should be considered in principle. However, due to the bielectronic nature of H, 
only single and double excitations on the determinants belonging to 5"M need to be 
considered. In some cases, further restrictions may be introduced. 

(IV) Estimation of c~ from the set of model space coefficients ci. All the equations 
above are exact but for a possible truncation of the external space 5: E. However, 
practical implementation requires to have estimates of c~, which are unknown, to 
built the dressing operator A. Note that the most natural choice is to determine 
each c~ from the set of c~ coefficients, and, whatever be the procedure followed to 
achieve this determination, it represents a way of decoupling the set of FCI 
equations (which can be written in the form of Eq. (15) for all qSi's). Such a decoup- 
ling is achieved in different manners in many ab initio correlation methods [42, 43]. 

(V) Iterative self-consistent process. If the c~'s are estimated from the ci's, an 
iterative process can be conceived which can lead to self-consistency. Each iteration 
step has the structure 

A(Step n) =f({c}Step n-  1)}) Diagonalize {P (H + A)P} (step n) 

and yields an improved estimate of eo and of the c~ coefficients corresponding to 
~ E coM. Note that only linear equation system matrix operations are involved in 
each step. Of course, the whole diagonalization is not required at each step as far as 
we are concerned in a root or a few ones. 

This paper aims to show that an adequate selection of choices II, III, and IV 
allows to formulate a great variety of known correlation methods. The note- 
worthy among them are the following: 

1. The so-called electron pair methods (e.g. CEPA-n ... [15, 44, 45]); 
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2. Perturbation-variation methods (e.g. Davidson's Shifted-Bk [36-38]); 
3. Coupled cluster methods (e.g. CCD, CCSD, CCSDT-la, . . . ,  [46,47]). 

As it is shown below, the dressing operator A can be chosen just to ensure 
extensivity and size-consistency, i.e., just to ensure that diagonalizing H + A 
cancels all the non-linked diagrams' contributions and shows proper asymptotic 
behaviour of both the energy and the wavefunction for separate systems. In this 
case, a number of methods result following choices II and III above (and the 
possible further imposition of the condition that the methods became exact for two 
electron systems), and they are presented under the heading minimal size-consistent 
dressing in Sect. 3. On the other hand, A can be thought to include additional 
effects, and particularly, additional linked-diagrams' effects. We present the result- 
ing methods under the heading total dressin9 methods in Sect. 4. 

3 Minimal size-consistent dressing methods 

3.1 Implications of the separability requirement 

Consider a composite system made of two subsystems A and B, and suppose that 
these two subsystems no longer interact. Also assume that the orbitals are localized 
on either A or B. Let us call ~b0, and ~b0, the two single-reference determinants for 
the separate subsystems and ~uA and ~ the exact wavefunctions 

gSA = ~0, + ~ % q~,, (26) 
i 

v .  = + Zcj. j.. 
J 

The wave equation for the supersystem is the product of 7Ja and kUB 

(27) 

~vA. = ~'A ~'B (28) 

so that we have 

~AB = (O0, C~o, + ZCi, C)iA~O, + ~Cj, C~j,C~OA + ~',Z%Ci,(O~,4)j,. (29) 
iA Jn iA JB 

The last term in this equation includes the composite excitations on the 
supersystem which appear with coefficients which are products of the coefficients of 
the combined local excitations on the subsystems. 

Let us concentrate on the double excitations on system B that we represent with 
the double excitation operator O + . Any multiple excitation D} + 4)~, resulting from 
a double excitation Dj + on ~bi~, has a coefficient 

co.+ cD~ . (30) 

This asymptotic requirement is the key point of both separability and size- 
consistency. So, for a quadruple excitation Di+Dj +, its coefficient is 

c~.~ = ci. %, (31) 
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where % = eDL ~,and % = cDj; ~o. This means that remote double excitations are 
independent, a physically fundamental requirement. Notice that a quadruple 
excitation of that type involves two holes and two particles on system A, as well as 
two holes and two particles on system B 

= t ) +  .... .  r~+t""" q~o. (32)  q~ia j~ ~ a~ ba ~ cB dB 

n+rAt" involving charge transfer have zero The mixed excitations, such as ,-'a, b, , 
coefficients at infinite distances. If the subsystems get closer, these charge transfer 
excitations begin to have nonzero coefficients and one may write 

c~,j. = % % + remainder. (33) 

One may generalize this remark and say that if one can apply a double 
excitation D + on a determinant qS~, one can write 

cvf ~, = ca[ ~o ci + remainder. (34) 

The following set of approximations presented in Sect. 3 are based on the 
omission of the remainder, so that 

co; ~, ~ cDf ~, cl 

and especially for the quadruples q~, = Dj + q~i we will take simply 

(3s) 

c~ ~ cj ci. (36) 

In summary, if a double excitation Dj + can be performed on a determinant ~bi, 
whatever the degree of excitation of q~i, and leads to determinant ~b~, the coefficient 
c, will be taken as the product of the coefficient ci of the original determinant 
qS, times the coefficient cj of the determinant ~bj = D f  q~o. Note that the estimate of 
c, provided by Eq. (36) depends on the determinant ~bi we are dealing with, as 
a consequence of omitting the remainder as indicated above. It is this fact which 
makes the main difference between the approaches discussed in Sect. 3 and those 
discussed in Sect. 4. The methods presented in Sect. 4 no longer apply this 
simplification. 

3.2 An elementary modification of the MP2 method." the dressed 
independent excitation approximation 

As mentioned in Eq. (5) above, the knowledge of the coefficients of the doubles is 
sufficient to calculate the correlation energy. The simplest evaluation of these 
coefficients comes in the first order perturbation 

~1) Hio 
C i E ° -- E o, (37) 

where the denominator depends on the choice of the zeroth order hamiltonian 
(e.g., Moller-Plesset or Epstein-Nesbet denominators). This perturbative evalu- 
ation can be seen as an approximation of a two-dimensional CI matrix spanned 
by q~o and ~b i. Actually, diagonalizing such matrices provides a non-perturbative 
evaluation of the coefficients of each doubly excited determinant, and represents an 
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independent excitation approximation [32, 48]. The advantage of this procedure 
over MP2 is twofold: 

1. it includes higher order contributions through infinite partial summation of 
diagrams; and 

2. it never diverges even when some I c~[ tend to unity. 

From the effective Hamiltonian point of view one may consider that ~bo and 
q~i define a 2 x 2 model space 5~M = {q~o, ~bi} and one may be tempted to apply our 
basic procedure of dressing. The reference determinant 4~o interacts with all other 
doubly excited determinants ~bj # ~b~ which belong to the outer space, so that 
Eq. (18) gives 

Aioo = ~ cjHoj (38) 
j:gi 

which, taking into account Eq. (5), is equivalent to 

A~o = E .... - ci Hoi. (39) 

The determinant ~bi interacts, in principle, with some singles, doubles, triples 
and quadruples. We shall restrict the outer space to the quadruples in order to take 
into account the effect of the double excitations which already dressed ~bo. Those 
which interact with ~ are obtained from it by double-excitations ~b~ = D]~b~. If we 
accept Eq. (36) and noticing that 

<~b, I HI ~b~> = Hoj, (40) 

one obtains 

Aii= Z c jHoj .  (41) 
j, 014,, ¢ o 

Eq. (41) may be presented differently (and more conveniently from a computa- 
tional point of view) as 

Aii = • cj Hoj - Z cj Hoj (42) 
j, ~j = D~+~,, j, O~b, = 0 

or, in other words, 

All = georr - g EPV, (43) 

where E/EPV represents the energetic contribution of all double excitations which 
cannot be applied on i, because they involve at least one hole or a particle of q~i. 

In practice, the dressed-IEA method proceeds through successive diagonal- 
ization of 2 x 2 dressed matrices, until the coefficients convergence. In fact, the EPV 
contribution may be calculated without any additional loop and the cost of the 
process remains similar to that of an MP2 calculation. Despite the neglect of all 
H~j interactions the EPV's term introduces some interdependence between the 
excited amplitudes. This 2 x 2 CI matrix method incorporates some third and 
higher order perturbation effects as well as EPV diagrams of all orders acting 
through ~b~ as it has been discussed elsewhere [32]. Some few tests have exhibited 
a surprising numerical efficiency [32]. 
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3.3 The dressed independent electron pair  approximation (dressed IEPA) 

One may consider as model space q~o and the set of all doubles which have the same 
holes a and b. Let us call 5Pab this model space. One may apply the same logics as 
above in dressing the CI matrix. If one calls 

ecd = ~ cj Hoj (44) 
Z4,~ e se~, 

then 

Eeorr = 2 e c d  
c < d  

and the dressing matrix elements will be for the 6Gb CI matrix 

A ~  = E .... -- e,,b 

and 

(45) 

(46) 

A~f = E . . . .  - ~ c jHoj .  (47) 
j, D;'~, = o 

Note that, as in the IEA case, E . . . .  may be eliminated for the determination of 
the coefficients since the final correlation energy is calculated from the coefficients 
of the doubles (see Eq. (45)). If one dresses by 

A~ (48) : - -  e a b  

and 

Ai]b = - Z c j H o j =  --E~ Pv, (49) 
j ,  D](~, = 0 

one obtains a dressed IEPA approximation, taking into account all EPV's. Histori- 
cally, IEPA has been proposed as the independent diagonalization of undressed CI 
matrices for each 5P~b space. We maintain the term independent, despite some 
interdependence through EPV's, since the Hij interactions for ~bi and q~j having 
different hole pairs are omitted. This method is presented here for the first time and 
has never been used. 

3.4 Size-consistent SDCI  and beyond 

3. 4.1 Singles and doubles model space: improving CEPA 
The next approximations above MP2 are those which incorporate the interaction 
between the doubles such as MP3 and SDCI. Let us take the model space as the 
SDCI space. The dressing of ~bo is zero since it does not interact with outer space 
determinants (i.e., triples or higher). The singles interact with triples and the 
doubles interact with triples and quadruples. We shall neglect at this stage the 
interaction between the doubles and the triples and only consider the effect of 
double excitations Dj + on the singles and the doubles. 
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In each case we shall assume that Eq. (35) holds and we obtain, from 
Eq. (18), 

A,,=cU 1 ~ <qf, lHIO+qb,>c~c~ = ~ Hojcj (50) 
j ,  O f ¢ t  e s 0 j ,O:c)i 4= 0 

which, as discussed above, can be written as 

A u = Eeorr - E/~Pv. (51) 

This equation is identical to Eq. (43) but it works now in a SD model 
space. This is the leading equation defining the diagonal dressing of an 
SDCI matrix which makes it size-consistent and exact for two electron systems, 
provided that the procedure has been iterated to convergence. Hence, the resulting 
method has been labeled (SC)aSDCI which stands for self-consistent size-consistent 
singles and doubles CI [24]. The CI acronym is kept in the label although the 
procedure is not variational to indicate that it proceeds through matrix diagonaliz- 
ations and handles only ci coefficients. It has been shown [24] that the dressing 
defined in Eq. (51) ensures the strict separability of an A --- B problem into 
noninteracting A and B subsystems provided that the MOs are localized. The 
defect of the method is that it is not invariant under rotation of occupied or virtual 
orbitals. From a practical point of view, the method is very easily implemented and 
the extra cost over a traditional SDCI calculation is made very small by an efficient 
computation of the EPV corrections through storage of partial summations [49]. 
As it will be seen in the next section, the method is easily generalized to any CI 
space. 

It is enlightening to compare the (SC)2SDCI method to the variants of the 
well known CEPA method. We consider, for instance, the most elaborated 
version CEPA-3 [17,44,50] in terms of spin orbitals [42]. In CEPA-3, 
the row i corresponding to the doubly excited configuration q~i = l~b~,) can be 
written as 

H,o + ~ ( ~i , H -- Eo , ~j) cj -- c, ly'. Ck,,~Hok,~,t = 0, (52) 

where index k(o runs over diexcited configurations which have the same holes a, b as 
~bi and Eo = Hoo. 

The dressing formulation is now easy if one compares with Eq. (16) written for 
the diagonal dressing case Au 

Hio + ~ cjH~j + ci(Hu -- ~o) + ciAu = 0. (53) 
j ~ O , i , j ~ , ~ t  

Taking 5°M as the whole set of double-excitations {q~j} and remembering that 
E .... = eo - Eo, it is immediately seen that 

A cEPA = E~o~ --  ~ Ck,,,Hok.,. (54) 
kol 

where the meaning of index k(0 has been indicated above. 
Of course, Eqs. (53) and (54) are nothing but another way of writing CEPA 

equations, and are included here only for the purpose of unifying the presentation 
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of different methods. Note, however, that CEPA incorporates only a part of the 
EPV corrections. CEPA-0 [15, 16, 42] neglects all of them, while CEPA-3 1-44, 50] 
only considers the EPVs which violate the exclusion principle through the holes 
and omits the violations through the particles. Hence, an (SC)2DCI method can be 
considered as a full CEPA method. From this analysis, which symmetrizes the role 
of holes and particles, the reference to electron pairs in the CEPA acronym is a 
purely historical remainder. 

Notice that (SC)2SDCI incorporates the effect of singles and this opens the way 
to further generalizations. 

3.4.2 (SC)2Cl for a general C1 space 
It has been shown elsewhere [24] that the (SC) 2 procedure is easily generalized to 
an 5eM space made of any selected CI including all the doubles as well as a selection 
of singles, triples, etc. Then one shall again restrict the effect of the outer space to 
the effect of the double excitations on each determinant q~i belonging to the model 
space. Assuming once more Eq. (35) to be valid whatever the degree of excitation of 
~ ,  one obtains the general expression for the dressing 

A. = ~ Ho~ cj (55) 

or, equivalently 

Au = Ecorr - E~ ev - Ri, (56) 

where the new contribution Ri is given by 

Ri = ~ Ho~cj (57) 

and has been introduced to avoid any redundancy that would result from dressing 
the configuration ~bi s 5eM by a double excitation D f  which acting on q~i would send 
to a determinant already belonging to 50 M. 

This method applies for instance to MR-SDCI spaces (e.g., CAS-SDCI). 
In this case, the dressing will never affect the diagonal energies of the reference 
configurations that do not interact with the outer space determinants q~, s 5"E. 
Note that the method is also applicable to selected CI spaces which do not include 
all doubles. 

A crucial remark must be formulated at this stage. Despite the multireference 
character of the model space, the (SC)2CI method remains a single-reference 
dressing, since the principal model space 5% introduced in Sect. 2.1 above remains 
reduced to ~bo. One should distinguish between the type of model space treated and 
the dressing technique. The first one may be multireference, while the second one is 
single-referential all along this work. An (SC)2MR-SDCI is a special case of an 
(SC) z selected CI. It should not be confused with a MR(SC)2CI [51,52] where 
the dressing would be performed from a multideterminantal principal model space 
and would be multireferential in nature. This last problem is out of the scope of the 
present paper. 

Table 1 shows schematically the set of methods which have been collected 
under the heading of minimal size-consistent dressing methods. 
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4 Total dressing methods 

We move back to the problem of how to obtain the c, coefficients for ~b~ e 5PE in 
terms of the ci ones (~bi e 5eM), but now we want to include, besides the nonlinked 
effects that ensure size-extensivity, additional linked-diagrams effects. This will 
remove, moreover, the inconsistency of using different estimates for a given e~ 
depending on which ~b~ one is dealing with. 

Two ways for estimating e~ have been tried. The first one uses purely pertur- 
bative-like expressions for c,, and leads to perturbation-diagonalization methods. 
The second one involves products of c~ coefficients and, alone or combined with 
perturbative contributions to c~, leads to coupled cluster methods. 

A great variety of methods can then be conceived and some systematic notation 
is needed. We will denote thereafter each method according to the following 
pattern: 

Model space [external space]:, 

where the subindex incorporates additional information, e.g. if a perturbative 
(denoted as subindex p) or a factorization (denoted as subindex f )  approach has 
been used. Model and external spaces will be described in the conventional way, 
namely, S for singles, D for doubles, etc. [53]. 

4.1 Perturbative total dressing or simplified shifted-Bk 

We can consider the following zeroth order Hamiltonian 

no = E°I Cs) + Z E°I (58) 

At second order, c~ is given by 

( ~ c~ t) Hs~ ~ (E ° - E°) -1. (59) 6(2)= 
\je~M / 

Taking the same expression for c~ but replacing cl for c~ '), and from Eq. (19), we 
have for the dressing 

~ ( ~ csHs~ ~ H,~ (E ° -  E°) - '  (60) A~'o= 
/ 

We have now all the flexibility in the selection of 5eM as well as in the choice of 
denominators (i.e., of Ho), that is characteristic of MBPT [54-58]. 

A noniterative intermediate Hamiltonian formulation had been previously 
proposed [-25, 27] which leads to the so-called shifted-Bk approximation. Shifted-Bk 
was proposed by Davidson 1-36-38] in relation with a previous work by Shavitt 
[59] and it requires, in the usual IHT formulation, a full matrix dressing operator 
built to second order so that 

A~ ~ = Z H~,H~J( E° -- E°) -1" (61) 
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The equivalence of our A~0 dressing given at Eq. (60) and the shifted-Bk dressing 
of Eq. (61) is shown by comparing the row relative to qS~ ~ 5aM in the equations 

and 

P (H + A ~') P 7to = eo % (62) 

P (H + A v) P ~o = ~o ~o. (63) 

This equivalence, as well as the interest of our formulation, have been discussed 
in a previous work [25] and will not be repeated here. We prefer, instead, to remark 
an important  characteristic of total perturbative dressing procedures, notably, 
its ability to incorporate EPV diagrams' effects by means of a denominator  shift. 

The argument leading to this improvement is very simple in the context of this 
paper. Suppose that we let a ~b~ belonging to 5aB to be included in 5aM. The row 
corresponding to ~b~ in P(H + A) P gto = eo~o is now 

cj Hj, + c~ (H,, + A,, - ~o) = 0, (64) 

where A~ is taken as the only non zero A~j element (i.e., as a diagonal dressing). 
Isolating c~ we have 

cj Hj~ 
c~ = j ~ s,, j ~ ~ (65) 

~o - [ n , ,  + z t , , ]  

We have now different options for A,~. 

1. We can take A,, = eo - E ° = E~or~. In this case, we have the nonimproved 
perturbative dressing of Eq. (60), i.e., we have shifted-Bk. 

2, If we take A,~ as a size-consistent dressing as it was discussed above (see Sect. 3 
of this paper), we have 

A ~  - E e o r r -  2 C i Hoi = E . . . .  + E EPv (66)  
i, + Dj ~bo = 0 

and 

L Cj Hj~ 
c~ = J ~ sM, j ~ ~ (67) 

E°o - EH~ + E F  v] 

This correction has shown to be very efficient to improve the behavior 
of the perturbative total dressing model for the treatment of single bond breaking 
[25]. 

If 5aM is made of S and D we should label, according to our above conventions, 
SDCI[TQ]p the method that is equivalent to shifted-Bk and SDCI[TQ]p+Epv the 
improved method. 

As a restrictive comment on this approach one should mention the fact 
that the perturbative evaluation of the outer space coefficients destroys the strict 
separability for intermolecular problems although it remains numerically accurate 
[25]. 
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4.2 Factorized total dressing or coupled cluster theory 

Let us assume that 9°M is reduced to ¢o and the doubles, YM = {¢o, ~bi = D/+ ¢o}, 
and that we restrict the outer space 5~E to the quadruples. It is well known 
from perturbation theory that the second order coefficient of a quadruple can be 
written as 

C(2) (1) C 1 1 )  ( 6 8 )  
= 2 Ck 

(k,O, ~, = o~D?¢o 

where the running indexes (k, l) are enclosed in parentheses to indicate that the 
summations run on all different pairs of complementary double excitations k and 
I into which ~ can be decomposed, i.e., such that q~ = D~D + 0o. Of course, a proper 
account of the signs of the coefficients of the doubles according to the diverse 
permutations of the labels of holes and particles is implicitly defined in the 
conditions appearing under the summations and will be assumed in the following. 

Adding higher order effects one may write 

c~ = ~ CkCl. (69) 
(k,t). ¢. = D~D?4~o 

The dressing of the DCI matrix by the effect of the quadruples can now become 
nonperturbative by writing 

Aio = ~'. c, H,a = ~ ( ~ c~ c~ )Hoj ,  (70) 
~, a e YE = {Q} j ,  D+~i ¢ 0 (k, l), D~+D~ = V ? O f  

where H~= has been replaced by Hoj. The above equation provides a dressing 
formulation for the CCD method, as it has been recently tested [26, 39], even 
though the possibility of calculating a CCD wavefunction by iterafive solutions of 
a secular equation is well known [60]. 

We can describe briefly the way in which CC problems can be formulated as 
iterafive series of eigenvalue-like equations by means of dressing matrix techniques. 

Coming again to Eqs. (2) and (3) and equalling the FCI and the CC ansatz 
[20, 22] expansions of 7Jo, we have 

~Po = f2 q~o = (1 + C1 + C2 + C3 "~ C 4  + " ' "  ) (Do = exp(T1 + T 2 + T 3 + " "  ) ~bo, 

(71) 

where the C. and T. operators have the same formal structure, namely, 

C n  ~ rs ,., ~ A rs ... z X~b... (72) ~.~ Cab .. ,  n n 
ab .., n, rs ,.. z 

with '~ ' z tab ..., amplitudes instead of c coefficients for T,, and where the )~ are 
excitation operators in the normal form [58] 

^r . . . .  = a + a +  
X ab ... "'" ab aa . (73) 

Equation (71) leads easily to the well known hierarchy of equations relating 
C. and T. operators [61-64]. 
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As an example, for the CCSD approach, we have 

C1 = T1, 

Cz = T2 + ½ T ~ ,  

C3 = T1Tz + } Tx a, 

I 4 C4 =½ T~ + 2--g T ,  +½ T~ T2. 

The CCSD equations can be conveniently written as 

<¢o I H I(C~.) ¢o> = Eoo,,, 

<¢,~IHI(C, + C~) ¢o> + <¢f tZ t ¢o> = dEoo,,, 

<¢J~l/~1(1 + C, + C~) ¢o> + <e l l a  1¢o> = c~'eoo., 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 

(8O) 

D coefficients, i.e. the terms where the terms which are not linear in the c s or Q 
dealing with T, products or powers which cannot be included into a complete 
C, operator, have been grouped into the dressing terms a n d / t  = H -- Eo. The 
equivalence in the role of these dressing terms and those defined in Eqs. (18) and 
(19) is made clearer if we write ~o in the following way 

To = ¢o + (T, + T 2 + ½ T ~) d?o + (Ta T2 + } T ~ + ½ T ~T2 + ~- T Z2 + z-~ 

= (~0 + (C1 + C2)(~o '~ (C3 "~ C4)(~o, (81) 

One immediately sees that the role of dressing in Eqs. (79) and (80) is just to take 
account of triply and quadruply excited configurations, so that the natural parti- 
tion of spaces for having CCSD is to take ,9°M = {¢o, S, D} and 5PE = {T, Q}. 

The effect of the external space is introduced in the usual way, as defined in 
Eq. (19), but now the form of calculating c~ is derived from the set of Eqs. (74)-(77), 
from which it is easily deduced that 

C3 = C,C2 - ½  C 3, (82) 

= ~ Cz -- "~ C~. (83) C4 1 2 

These expressions provide a guide on how the c~ coefficients of quadruples and 
triples can be obtained from appropriate combinations of products of coefficients 
of singles and doubles. Notably, if we take hem = {¢o, D} and 5zE = {Q}, we can use 
Eq. (83) to take 

c~ Z D n (84) ~--~ C i C j  
( i , j )  

as it was deduced above in Eq. (69) from perturbation theory arguments. Hence, 
the dressing can be written as in Eq. (70). We then have a method which in 
the systematic notation introduced above would be called DCI[Q]:  and which is 
identical to CCD [26, 39]. 

If one wants to take account of singles and the disconnected contributions of 
triples on them, one simply has to include {S} in hem and to take (see Eq. (82)) 

~.~ v s D (85)  C a ~ C i C j ,  
( i , j )  
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where (i,j) enclosed in parentheses has the same meaning as before, but now 
c~ = M+D+~o where M + is the single-excitation operator which generates the 
single ~bi from ~bo. The resulting method, SDCI[TQ]: only differs from CCSD in 
the neglecting of third and fourth powers of c s in Eqs. (82) and (83). These powers 
of coefficients of singles can be included if an unusually high weight of singles 
contributions occurs. 

Another correlation technique called QCI or QCISD, first proposed by Pople 
et al. [65], is somehow related to CCSD [43]. It can be expressed by a set of 
non-linear equations similar to those of CCSD but only a few cluster product terms 
are retained, namely Ta T2 in the equations corresponding to single excitations and 
a 2 ~Tz in the equations of doubles. These terms are kept because they represent the 
minimal requirement to warrant size-consistency. A formulation in terms of IHT, 
very similar to that of CCSD discussed above, is then possible, but the removal of 

T 2 19 coefficients of doubles disconnected products corresponding to ~ 2 from the cj 
would be needed because these terms are actually present after diagonalization 
of 5:M = {S, D}. Equations (84) and (85) would then be used to calculate e, 
coefficients. 

The leading effect lacking in CCSD or equivalent treatments is the connected 
contribution of triples [66-69]. It is in fact the only missing 4th order contribution 
to the energy. The simplest approach one can build including T3 operators is to 
expand exp(Ta + T2 + T3) but to neglect all cluster product terms which lead to 
excitations higher than quadruple excitations. The first C, operator whose direct 
relation to T, operators is then affected in Eqs. (74)-(77) is C3 which becomes 

C3 T1T2 1 3 = + g T 1 + T3. (86) 

Taking into account Eqs. (76) and (82), one can write 

Ca = Ca Cz - ½  C 3 + C~, (87) 

where C3 L -= T3 has been introduced to make clear that the t3 amplitudes are to be 
taken directly as a term which contributes to the coefficients of triples, namely, the 
connected triples part. We can then resort to a perturbation-like estimate of these 
contributions, so that 

c, (4,o 11t f l 4 i) (E ° o -1 = - - , ( 8 8 )  

i, S• 

where F is the Fock operator relative to ~bo. This expression should replace Eq. (22) 
of Ref. [26] the results of which have been obtained from the above Eq. (88). 

In this way, the connected effects of triples are coupled with the configurations 
of 5:M through diagonalization of P(H + A)P, but there is no direct coupling 
between them. This procedure is more elaborate than CCSD(T) [66, 70, 71] (where 
all the connected effects of triples are treated at the MP4 level on the energy but 
have no effect on the calculation of e s and cJ ~) but less accurate than CCSDT [72] 
(where all the effects of triples are completely coupled with all the space of S, D, T, 
and Q, the only limitation coming from the truncation of the cluster series to 
Ta + Tz + T3). In fact, our procedure is equivalent to Bartlett's CCSDT-la 
approach [47, 73], as it has been discussed in a previous work [26], provided that 
the same perturbative partition of H (namely, the Moller-Plesset partition) would 
be used. Note also that EPV corrections can be added in the denominators of Eq. 
(88) in the same way as was discussed in Sect. 4.1 above. 
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4.3 Generalization: coupled cluster type dressing of  an arbitrary (21 matrix 

Consider a CI space 5 a, which can be for instance an MR- or a CAS-SDCI space. 
The eigenvector of P~HP~ which satisfies 

= eo ~ (89) P~HP~To ~ 

is a linear combination of the determinants, with the largest coefficient on a single 
determinant ¢o, which we shall call the generator. In the intermediate normal- 
ization 

T~ = (% + ~ c, (9, (90) 
i 

with Icil ~< 1. 
It is important to remark again that despite the possible MR character of the CI 

space, one and only one determinant (which must be one of these references) plays 
a special role in the forthcoming development. 

One may wonder whether the CI wavefunction might be written as the projec- 
tion in the space 50 of a coupled cluster type wavefunction, which uses ¢o as the CC 
single-reference To = exp(S) I¢o>, i.e., whether one may write 

To ~ = P~ exp(S) I¢o> (91) 

or, equivalently, 

c, = (¢ ,  [ exp(S) I ¢o>. (92) 

It is always possible to find an S satisfying both Eqs. (90) and (91), provided that 
one introduces a sufficiently complex form of S, i.e., as many operators as deter- 
minants 

S = ~, t,f(i, (93) 
i 

where 

I ¢,)  = )~1 ¢o).  (94) 

The ~i are the multiple-excitation operators creating the various determinants 
from ¢o as they were introduced in Eq. (73). It is necessary to consider all of them 
since the ci coefficients of the CI wavefunction are, a priori, independent variables, 
not obtainable by products of lower rank amplitudes. The t~ amplitudes are easily 
obtained from the considered c~'s by using the cascade of Eqs. (74)-(77) discussed in 
the previous section. Hence, for single excitations, 

ti = ci (95) 

while for double-excitations 

1 ( 9 6 )  
t i  - -  2 E ~k ~l - -  Ci ,  

(k, I), Tk Tl = Ti 

etc. 
The CI wavefunction may always be shaped in an exponential expansion from 

qbo. Once S is so defined, it is easy to calculate the outer space coefficients 

c~ = (qS~ { exp(S) l q~o) (97) 



Size-consistent single-reference methods for electronic correlation 235 

especially those which interact with the gbi's and are therefore triples and quadru- 
ples with respect to the references if 5: is an MR-SDCI space. One should remark 
that some outer space determinants may not appear in exp(S) Igbo) (Eq. (97) giving 
c= -- 0) as already occurs for singles, triples, pentuples, ... in CCD. One may also 
remark that the evaluation ofc~ from Eq. (97) may be poor, as is already true for the 
triples in CCSD which misses the dominant second-order component of their 
coefficient. 

For the coefficient c, determined by Eq. (97) one may easily define 

Vi = Z Hi, e, (98) 
¢t 

and define a diagonal or a column dressing A by means of Eqs. (18) and (19). Then 
one may diagonalize the dressed MR-SDCI matrix 

P~(H + A)P~I__~o) = _~o I t//o) (99) 

repeating the process to self-consistency between A and 7/. This procedure, recently 
proposed by Adamowicz and one of us [40], represents a mapping of an arbitrary 
CI into a CC logics for the research of a single state accepting one determinant as 
generator (i.e., the determinant of largest coefficient). Note that this very general 
method might in principle be applied as well to excited states dominated by a single 
determinant. Anyway, it illustrates the fantastic flexibility offered by the dressing 
technique, and its heuristic strength. One also sees in this proposal the use of 
a general logics which consists in a back and forth movement between CI and CC. 
From the CI wave function we guess amplitudes of an exponential wave operator, 
then we calculate the coefficients of the useful outer space determinants, redefine 
a dressed CI matrix, and repeat the procedure to self-consistency. 

Table 2 summarizes the different methods which result from the choices of 5eM, 
SeE and the way of calculating e, when a total dressing is used. 

5 Combination of dressings of different accuracies 

Since we have formulated a hierarchy of methods, ranging from indepen- 
dent excitation approximation, IEA, (i.e., 2 × 2 CI dressed matrices) to a general 
CC, in a unique frame offered by the concept of intermediate hamiltonians, it is 
possible to combine these various levels of treatment in a consistent manner. The 
present section is intended to present some of these possibilities without aiming 
exhaustion. 

5.1 Combinations of (SC) 2 and CC dressing techniques 

1. A first combination has been already explored and it consists of two separate 
steps: 

(a) An (SC) 2 calculation, which fixes a set of size-consistent coefficients for the 
singles and doubles, i.e., a well behaving ~o function, followed by 
(b) the calculation of the linked effects of triples and quadruples, as a first-order 
perturbative correction taken on the ~o function. 
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In other words, we can calculate the expected value of ~o after having incorporated 
the linked effects of the external space 09~E as a dressing of the Hamiltonian 
operator, P(H + A)P. Hence, we write 

<~olP(H + A)PI~'o>=<~oIPHPI~o> + <~oIPAP]~o>. (100) 

Such a calculation can provide a good approach to the exact energy eo and 
represents a moderate-cost high-quality approach because only a non-iterative 
second step is required. Other well behaving ~o functions can be easily obtained 
also at a moderate cost, e.g., CCSD. However, in actual calculations, care must be 
taken to ensure that the dressing A in Eq. (100) includes only those effects which 
were not yet taken into account in 71o. Otherwise, a further partial undressin9 process 
would be required. 

An example of this procedure is provided by the method that we call mean 
value total dressing, MVTD, which was first published as total dressing-Z [74] and 
labeled td-2' and has been recently used for a detailed study of the correlation 
contributions along some single bond breakings [69]. 

2. One may do better than a CCSDT-la calculation without going to the complex- 
ity of a general MR-CI-CC mapping presented above in Sect. 4.3. One may 
perfectly consider a CI space consisting of ~bo, all singles and doubles and selected 
triples, quadruples, ... for instance, those which belong to an MR- or CAS-SDCI 
space. Then one may dress the triples, quadruples, etc. in a simple (SC) 2 mode 
according to Eq. (56), and dress the singles and doubles totally by the linked and 
unlinked effects of the triples and quadruples which do not belong to the CI space. 
This procedure is better than CCSDT-1 a since it considers the interactions between 
the selected triples, quadruples, etc. It is much less expensive than the MR-CI-CC 
mapping since it only retains singles and doubles excitation operators in the CC 
expansion and only applies it to the external triples and quadruples. The computa- 
tional time should remain close to that of the CCSDT-la procedure since the (SC) 2 
dressing is straightforward. 

3. One may propose combinations of (SC) 2 and CC which cost less than the 
full CCSDT-la approximation. One suggestion consists in defining two sets of 
MOs. From a (SC) z preliminary calculation, or from another low cost approxi- 
mation (MP2, IEA ... ) one may calculate the approximate natural orbitats, 
diagonalizing an approximate correlated density matrix. Then one may 
partition the set of MOs by selecting the MOs having the occupation numbers 
closer to unity (closer to 1/2 for spin-orbitals) and define them as class-1 orbitals. 
The single and double excitations can then be divided into those which only 
involve class-t holes and particles, and the others. Let us call the first ones class-1 
excitations. The triples and quadruples may be partitioned accordingly, and one 
may consider a full dressing of the SDCI matrix by the class-1 triples and 
quadruples only, the effect of the other triples and quadruples being treated at the 
(SC) 2 level only. 

The advantage of this procedure is that it reduces the bottleneck loop in 
actual calculations to the N1 orbitals of the class-1 ((N1) 7 step for the triples of 
class-l). In the canonical CCSDT-la method one might also freeze the 
orbitals to class-1 but then the effect of the class-2 double exaltations, which 
is important, would be omitted. The use of a unique dressing frame, calculated 
at various levels of accuracy, offers rational and consistent combinations of 
approaches. 
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5.2 Combination of (SC) 2 and IEA 

For very large molecules and/or basis sets, the SDCI space may be already too 
large for performing the dressed SDCI diagonalization even with direct techniques. 
In that case it is worth to combine the low-cost IEA technique with (SC) 2 
approximations. From a full lEA or an MP2 preliminary calculation one may 
select a subset of important doubles, e.g., those with a coefficient greater than 
a given threshold. The doubles of lower coefficient will be treated at the IEA level 
only. Of course, they will be by far the most numerous. Then one may dress the 
selected CI matrix according to (SC) z methods discussed above. The EPV's 
contributions are calculated exhaustively by considering the double excitations 
which are impossible to apply to the considered determinant ~bi, whatever its level 
of treatment, lEA or (SC) 2. This is easily taken into account through the use 
of unique arrays of partial summations, as it has been discussed in detail in 
Refs. [24, 49]. This method has been already tested [52] with convincing results not 
only for cases where the CI space was composed of selected singles and doubles, but 
also for cases where it involved selected higher excitations. 

5.3 Combination of CC, (SC) 2 and lEA techniques 

In principle one may perfectly combine our three levels of treatment in a consistent 
manner. For  instance one may divide the approximate natural orbitals (or the 
original MOs) into three groups according to their occupation number (i.e., 
according to their contribution to the correlation energy). Let us call class-l, -2 and 
-3 the three classes of increasing values of the quantities Ins - 1t, i.e., by decreasing 
importance in the correlation phenomenon. We may take a model space built of 
the singly and doubly excited configurations involving only the MOs of classes 
1 and 2. The other double excitations (i.e., those which involve at least one MO of 
the 3rd class) will be treated at the cheapest level (lEA). Then the dressing of the 
SDCI matrix will be performed as follows: 

- The triples and quadruples which only involve holes and particles of class-1 will 
bring their linked and unlinked effects to the dressing. They will be treated at the 
CCSDT-la  level. 

- The other triples and quadruples are treated in an (SC) 2 model by the straight- 
forward dressing of Eq. (56). 

Thus one would obtain a method applying various intensities to different 
subsets of excitations, rationally selected. A convenient application should balance 
the computational effort in the three levels. 

6 Conclusions 

We have shown in this work how a great variety of common methods for the 
treatment of electron correlation can be understood from the unique point of view 
of intermediate hamiltonians theory. Hence IHT provides a common reference 
framework allowing to classify and establish a hierarchy of all single-reference 
methods ranging from simplest dressing of 2 × 2 CI matrices to the most elaborated 
CC methods. This does not mean, of course, that IHT is necessary or even the 
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easiest way, in most cases, for formulating these methods, but it just provides a way 
of thinking that can be fruitful and is very flexible. 

The three degrees of freedom in the IHT formulation which have been exploited 
to generate the panoply of methods collected in Tables 1 and 2 are the following: 

1. choice of the model space which may range from a minimal dimension of 2 
(~bo plus each q~ independently) to MR-SDCI. 
2. choice of the external space determinants which are considered in the dressing 
process. In general one would consider all single and double excitations on the 
model space determinants but some of them may be neglected without destroying 
size extensivity. 
3. mode of evaluation of the external space coefficients. Two aspects have to be 
considered here, namely, (i) the task demanded to the dressing, simple achievement 
of size consistency (Sect. 3) or incorporation of the linked effects of the outer space 
(Sect. 4), and (ii) the way of evaluating these coefficients, in a perturbative manner 
or as a product of coefficients of the model space determinants (or as combinations 
of these two techniques). 

As by-products of this effort of synthesis, some new levels of approximation 
have been mentioned here (e.g., an improved or dressed IEPA), but the main 
practical benefit of this systematization consists (cf. Sect. 5) in the proposition of 
consistent combinations of methods of various costs and accuracies to treat 
different parts of the correlation energy. These combinations may imply very 
simple lEA evaluations of the smallest CI coefficients up to CCSDT-1 evaluations 
of the most important ones. 

Finally, we would like to stress the fact that the dressing techniques reviewed 
here are single-reference dressings since for their evaluation a determinant plays 
a special role, but they may be perfectly applied to multireference CI model spaces, 
as already shown for the (SC) 2 CI approximation. The conception of multireference 
dressing techniques, in which several determinants will play an equal role in the 
evaluation of the dressing operator is the subject of a work under progress 
[51, 52, 75]. 
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